Improved binary particle swarm optimization using catfish effect for feature selection

نویسندگان

  • Li-Yeh Chuang
  • Sheng-Wei Tsai
  • Cheng-Hong Yang
چکیده

The feature selection process constitutes a commonly encountered problem of global combinatorial optimization. This process reduces the number of features by removing irrelevant, noisy, and redundant data, thus resulting in acceptable classification accuracy. Feature selection is a preprocessing technique with great importance in the fields of data analysis and information retrieval processing, pattern classification, and data mining applications. This paper presents a novel optimization algorithm called catfish binary particle swarm optimization (CatfishBPSO), in which the so-called catfish effect is applied to improve the performance of binary particle swarm optimization (BPSO). This effect is the result of the introduction of new particles into the search space (‘‘catfish particles’’), which replace particles with the worst fitness by the initialized at extreme points of the search space when the fitness of the global best particle has not improved for a number of consecutive iterations. In this study, the K-nearest neighbor (K-NN) method with leave-one-out cross-validation (LOOCV) was used to evaluate the quality of the solutions. CatfishBPSO was applied and compared to 10 classification problems taken from the literature. Experimental results show that CatfishBPSO simplifies the feature selection process effectively, and either obtains higher classification accuracy or uses fewer features than other feature selection methods. 2011 Elsevier Ltd. All rights reserved.

منابع مشابه

Catfish Binary Particle Swarm Optimization for Feature Selection

The feature selection process constitutes a commonly encountered problem of global combinatorial optimization. This process reduces the number of features by removing irrelevant, noisy, and redundant data, thus resulting in acceptable classification accuracy. Feature selection is a preprocessing technique with great importance in the fields of data analysis and information retrieval processing,...

متن کامل

Feature Selection Method with Proportionate Fitness Based Binary Particle Swarm Optimization

Particle swarm optimization(PSO) has been applied on feature selection with many improved results. Traditional PSO methods have some drawbacks when dealing with binary space, which may have negative effects on the selection result. In this paper, an algorithm based on fitness proportionate selection binary particle swarm optimization(FPSBPSO) will be discussed in detail aiming to overcome the p...

متن کامل

Chaotic Binary Particle Swarm Optimization for Feature Selection using Logistic Map

Feature selection is a useful technique for increasing classification accuracy. The primary objective is to remove irrelevant features in the feature space and identify relevant features. Binary particle swarm optimization (BPSO) has been applied successfully in solving feature selection problem. In this paper, chaotic binary particle swarm optimization (CBPSO) with logistic map for determining...

متن کامل

An Improved Binary Particle Swarm Optimization with Complementary Distribution Strategy for Feature Selection

Feature selection is a preprocessing technique with great importance in the fields of data analysis, information retrieval processing, pattern classification, and data mining applications. It process constitutes a commonly encountered problem of global combinatorial optimization. This process reduces the number of features by removing irrelevant, noisy, and redundant data, thus resulting in acc...

متن کامل

Improved Binary Particle Swarm Optimization Based TNEP Considering Network Losses, Voltage Level, and Uncertainty in Demand

Transmission network expansion planning (TNEP) is an important component of power system planning. Itdetermines the characteristics and performance of the future electric power network and influences the powersystem operation directly. Different methods have been proposed for the solution of the static transmissionnetwork expansion planning (STNEP) problem till now. But in all of them, STNEP pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Expert Syst. Appl.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2011